Third order iterative methods free from second derivative for nonlinear systems

نویسندگان

  • José L. Hueso
  • Eulalia Martínez
  • Juan R. Torregrosa
چکیده

In this paper, we present a class of new iterative methods, in which f ′(x) = 0 in some points is permitted. Analysis of convergence shows that the new methods are cubically convergent. Per iteration the new methods require one evaluation of the function and two of its first derivative, but no evaluations of its second derivative. Thus, the new methods have definite practical utility, which is demonstrated by numerical examples. Mathematics Subject Classification: 41A25, 65D99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

Two new three and four parametric with memory methods for solving nonlinear ‎equations

In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...

متن کامل

A modification of Chebyshev-Halley method free from second derivatives for nonlinear equations

‎In this paper‎, ‎we present a new modification of Chebyshev-Halley‎ ‎method‎, ‎free from second derivatives‎, ‎to solve nonlinear equations‎. ‎The convergence analysis shows that our modification is third-order‎ ‎convergent‎. ‎Every iteration of this method requires one function and‎ ‎two first derivative evaluations‎. ‎So‎, ‎its efficiency index is‎ ‎$3^{1/3}=1.442$ that is better than that o...

متن کامل

A NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX

It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 215  شماره 

صفحات  -

تاریخ انتشار 2007